Exploring the difficulties of lear ning object-oriented techniques: IMIS
Sheetz, Steven D;lrwin, Gretchen; Tegarden, David P;Nelson, H James;Monarchi, David E
Journal of Management Information Systems; Fall 1997; 14, 2; ProQuest

pg. 103

Exploring the Difficulties of Learning
Object-Oriented Techniques

STEVEN D. SHEETZ, GRETCHEN IRWIN, DAVID P. TEGARDEN,
H. JAMES NELSON, AND DAVID E. MONARCHI

STEVEN D. SHEETZ is an Assistant Professor of Accounting Information Systems
at the Pamplin College of Business at Virginia Tech. He received his Ph.D. in
information systems from the University of Colorado. His research interests include
the cognitive complexity of developing information systems, learning and use of
object-oriented development techniques, participatory design, and the application of
group support systems technology. He has published articles in Decision Support
Systems, Journal of Management Information Systems, and Object-Oriented Systems.

GRETCHEN IRWIN is a lecturer at the University of Auckland, New Zealand. She
received her Ph.D. and M.S. in information systems from the University of Colorado,
Boulder. Dr. Irwin’s research interests include the cognitive aspects of software reuse,
the cognitive aspects of object-oriented systems development, and the teaching and
learning of systems development methods and technology.

DAVID P. TEGARDEN is an Assistant Professor in Accounting Information Systems in
the Pamplin College of Business and a Fellow in the Center for Human—Computer
Interaction at Virginia Tech. He received a Ph.D. in information systems from the
University of Colorado. His research emphases are in the areas of object-oriented
software engineering, the development of cognitively based software complexity
measurements, psychology of programming, and the application of virtual reality and
visualization technologies in business. He has published articles in Object-Oriented
Systems, Journal of Management Information Systems, Decision Support Systems, and
Software Quality Journal.

H. JAMES NELSON is a Lecturer of Information Systems at the University of Kansas.
He received his B.S. in computer science from California Polytechnic State Univer-
sity, San Luis Obispo, and his M.S in information systems from the University of
Colorado, Boulder. He is currently ABD in Information Systems from the University
of Colorado. His research interests include developing theoretically grounded models
and metrics for business processes and investigating the problems people have shifting
to emerging technologies.

DAVID E. MONARCHI is a Professor of Information Systems at the University of
Colorado, Boulder. His research interests include conceptual modeling and the design
of object-oriented systems.

ABSTRACT: Object-oriented (OO) analysis, design, and programming techniques have
emerged as potential solutions to the software crisis. However, learning OO techniques
can be a difficult process. This study investigates students’ perceptions of the diffi-

Journalof-Management Information Systems / Fall 1997, Vol. 14, No. 2, pp. 103-131

Copyright © 1997 M.E. Sharpe, Inc.
0742--1222 / 1997 $9.50 + 0.00

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyyy



104 SHEETZ ET AL.

culties in learning and using OO techniques. Two groups of students who had recently
completed a sixteen-week course on OO systems development participated in the
study. Cognitive mapping techniques implemented with group support system (GSS)
technology were used to gather information on the students’ perceptions. The groups
used the GSS to identify what was difficult about learning and using OO techniques,
classify these concepts into categories, rank the relative importance of each category,
and determine the relationships among the categories. Importance rankings of the
categories show that learning basic object concepts was most important to and most
difficult for the students, followed by design issues, and programming techniques.
Composite cognitive maps of the shared perceptions of group members suggest that
educators and industry trainers can reduce the difficulties of learning OO concepts by
teaching simplified methodologies and controlling difficulties of the programming
environment.

KEY WORDS AND PHRASES: cognitive mapping, group support systems, learning,
object-oriented systems.

OBIJECT-ORIENTED (OO) SYSTEMS DEVELOPMENT TECHNIQUES (e.g., OO analysis and
design methods, OO programming languages and tools) have emerged as useful ways
to address the development needs of information systems (IS) groups and organiza-
tions [3, 8,9, 24, 33]. Many IS professionals and researchers consider OO techniques
a potential solution to the perennial problem of delivering timely and cost-effective
systems that meet users’ needs [25]. Leading journals, such as the Communications
of the ACM [10, 11, 12], and the popular press (¢.g., Business Week [37]), are also
promoting object orientation as a potential and partial solution for what currently ails
software development.

The OO approach to systems development uses problem-oriented representations
that attempt to reduce the cognitive distance between problem-domain constructs and
computational structures [3, 8, 24, 32, 33]. Proponents of this approach claim that OO
development may lead to higher-quality, more understandable, and more maintainable
systems than traditional structured techniques [29. 32]. However, learning and using
OO techniques have not proven to be easy, and research is needed to improve
understanding of the learning process [31, 34, 38]. Identifying learners” difficulties
with OO techniques can provide a basis for enhancing academic teaching and industry
training in this area.

The focus of this study is on identifying and understanding the issues that contribute
to the difficulties of learning and using OO techniques. We examine the perceptions
of two groups of students who recently completed a sixteen-week course on OO
systems development. We used a cognitive mapping approach implemented with
group support system (GSS) technology to capture the students’ perspectives on the
difficulties of learning and using OO techniques. Our results show that [caming basic
object concepts was most important to and most difficult for the students, followed by
design issues and programming techniques. Composite cognitive maps of the shared
perceptions of group members suggest that educators and industry trainers can reduce

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyyyy



LEARNING OBIECT-ORIENTED TECHNIQUES 105

the difficulties of learning OO concepts by teaching simplified methodologies and
controlling difficulties of the programming environment,

Research Method

COGNITIVE MAPPING IS A SET OF TECHNIQUES for studying and recording people’s
perceptions of the world around them. Cognitive mapping techniques have been used
to investigate diverse areas, including politicians’ beliefs [2], musician’s views of
performances [ 7], information systems requirements {27}, knowledge acquisition [20],
distributed artificial intelligence [40], and analysis of cognitive maps as decision-mak-
ing aids [5, 17, 21, 23, 39]. Cognitive mapping usually begins by asking participants
a question to elicit their perceptions. The questions in many studies are open-ended
and focus on exploring the perceptions of individuals in a particular environment [2,
17, 23]. This use of cognitive mapping is consistent with the use of cognitive mapping
in our study, where an open-ended question was used to explore students’ perceptions
of their OO learning experience.

An analysis of cognitive mapping techniques [2, 7, 17, 23] shows that most
techniques consist of three major activities: (1) eliciting concepts, (2) refining con-
cepts, and (3) identifying relationships between concepts. The Self-Q technique [4, 5,
6, 7. 39] is a specific cognitive mapping technique designed to reduce researcher bias
by obtaining directly from the participants both the concepts and the relationships
between the concepts. The Self-Q technique consists of the following steps:

Self-questioning to elicit concepts associated with the domain;
Grouping the concepts from self-questioning into categories;
Developing or defining the categories;

Ranking the categories by importance;

Determining relationships between categories.

Wk W =

In the fifth step of the Self-Q technique, each participant creates a cause map—a
special type of cognitive map that connects concepts to cach other with unidirectional
arrows, where an arrow represents an assertion that one concept affects another.

We used a group support system (GSS) to implement the cognitive mapping
procedures similar to those defined in the Self-Q technique. Several studies suggest
using GSS technology to implement the procedures of a research methodology, as
opposed to using a GSS as a decision-making tool {1, 15, 22, 36]. These studies
indicate that GSS is useful for recording the views of participants and controlling data
collection procedures. We had a threefold purpose in using the technology: (1) to
facilitate the participants’ tasks, (2) to expedite data collection, and (3) to reduce
researcher-introduced bias. Researcher-introduced bias was reduced by having the
groups, rather than the researcher/facilitator, identify the concepts and categories. The
facilitator neither directed nor influenced the content; he provided only procedural
guidance by keeping track of time and introducing new activities during the session.
Throughout the process, the facilitator followed prewritten instructions and did not
participate in discussion or determination of concepts and categories.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



106 SHEETZ ET AL.

Study Environment and Participants

The study was conducted at a major western university that has GSS technology and
a course in OO systems development. It provided a setting that had both the needed
technology and participants familiar with learning OO systems development techniques.

The participants in the GSS session were seven undergraduate and graduate students
pursuing degrees in information systems. Participants had recently completed a
sixteen-week course that included building a nontrivial OO prototype. The course
required students working in small groups to develop an OO analysis and design and
to implement the design in Smalltalk V/Windows (an OO programming language and
environment by Digitalk). The use of students in this study was appropriate because
our intention was to explore what novices find difficult about learning and using QO
techniques. These students were near the end of their degree programs and had
considerable experience taking courses and learning systems development techniques.
They were OO novices who nonetheless had prior experience learning other, more
traditional, systems analysis, design, and programming approaches. Thus, they were
able to reflect on their experience in the OO course and to compare it with their
experiences learning other systems development techniques.

Table 1 describes the systems development experience of the participants at the time
of the study. There were four participants in group 1 (participants 1-4) and three
participants in group 2 (participants 5-7).

Data were collected using the VisionQuest software of Collaborative Technologies
Corporation. The environment is configured as a teaching room with eight straight
rows of five 386 PCs on an LAN, with a public viewing screen. VisionQuest provides
the ability to structure group activities. In this case, the structure implements the
cognitive mapping procedures necessary to reveal the participants’ perceptions of the
difficulties in using OO techniques.

Group Support System (GSS) Sessions

Table 2 outlines the activitics performed during the GSS sessions and shows the time
elapsed, VisionQuest tool used, and data collected for ¢ach activity. The data collec-
tion approach used in this study is consistent with that used by Sheetz et al. [36]. Each
session lasted three to four hours, including a ten-minute break roughly halfway
through the session.

Two GSS sessions were conducted, one for each group. Participation in the study
was voluntary. One of the authors contacted students roughly one month after they
had completed the OO course. The students were invited to participate and told that
the results would help the researchers better understand OO learning difficulties and
improve the OO course. Students were paid for their participation. Seven students
volunteered; they were split into two groups. Group membership was determined
according to the participants’ time availability.

Participant input was captured by the logging program of the VisionQuest software.
In addition, the session was audiotaped to provide additional documentation of the

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



LEARNING OBJECT-ORIENTED TECHNIQUES 107

Table 1.  Profile of Participants
No. of
Programming Management programming Analysis

Group Participantno. experience experience languages experience
1 1 18 0 3 8

2 12 0 1 20

3 36 0 2 10

“ 48 0 2 10
2 5 36 0 5 12

6 20 4 3 14

i 8 3 4 4

Experience includes coursework and/or professional work and is reported in months.

timing of exercises, category definitions, and the activities of the facilitator. Partici-
pants were asked to respond (using the GSS) to the following statement:
We are interested in understanding the process of using object-oriented systems analy-

sis, design, and programming techniques. It would be useful to know what you be-
lieve is difficult to understand about using these techniques.

This statement was intentionally broad in scope, using the term “object-oriented
techniques” to cover analysis, design, and/or programming representations and tools.
The students had been exposed to many aspects of object orientation in the OO course
[28], from the OO “mindset” and concepts, to analysis and design methods and tools,
to the Smalltalk programming environment. Since we had no reason a priorito believe
that one of these areas was particularly easy or difficult for the students, we did not
want to direct them to a particular aspect of object orientation. This broad definition
reduces researchers’ bias introduced into the study, but it also leaves room for multiple
interpretations and can lead to a large variation in results. We felt that this tradeoff
was acceptable at this point in our rescarch.

Results

THE GSS SESSIONS CAPTURED PARTICIPANTS' PERCEPTIONS at the concept, category,
and relationship (cause map) level.

Concept Level

Concept-level data results from the concept identification procedure (see Table 2).
Concepts are the “things™ that participants perceive to be difficult about learning and
using OO techniques. Participants identified a total of 105 concepts. Group 1, with
four members, identified 65 concepts; Group 2, with three members, identified 40
concepts.'

The concepts can be loosely grouped into four areas, based on the content and
structure of the course. These areas are: (1) OO concepts (i.e., terminology and
foundations); (2) modeling (OO analysis and design activities and representations);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyp



108 SHEETZ ET AL.

Table 2. Steps in the GSS Cognitive Mapping Approach
Duration VisionQuest
Activity Description (min) tool
1. Elicit concepts
Introduction Describe system use; sign informed 30 Comment Cards
consent form; discuss framing and Brainwriting
statement and stall diagram.
Concept Elicit characteristics, concepts, 30 Brainwriting
identification and/or issues that contribute to
(increase or decrease) the
difficulties of using OO techniques.
2. Identify categories
Category Elicit categories to group concepts 30 Verbalfor
identification by similarity; agree on category participants,
definitions and names. Facilitator uses
Compactor
(Break) 10
3. Classify concepts
Concept Classify the concepts into (top) ten 45 Compactor
categorizations categories.
Discussion Discuss classification. 10 Compactor
4. Rank categories
Category rating step 1 Rate each category on a 7-point 5 Rating
scale, from important to extremely
important.
Discussion Group means are calculated and 15 Verbal
discussed. Discussion
Category rating step 2 Same as category rating step 1. 5 Rating
Discussion Group means are calculated and 15 Verbal
discussed. Discussion
Category rating step 3 Same as category rating step 1. 5 Rating
5. Define relationships
Identify Each individual is given a 30 Scoring
relationships comparison matrix of the categories
in a rating task. Rate each
comparison on a scale of -3 to
+3, from strong negative influence
to strong positive influence of one
category on another category.
Debriefing Enter comments on the GSS 10 Comment Cards

procedures and results of the
process.

(3) programming (specifically, Smalltalk); and (4) other (i.e., topics either not covered in
the course or covered in a cursory manner depending on available time and/or student
questions). One of the authors (also a teaching assistant in the course) classified each
concept into one of these areas without knowledge of the participants’ placements of the
concept into the categories they defined. The results are summarized in Table 3.

er. Further reproduction prohibited without permissiony,



109

-abenbue| OO ey} Buisn esusuedxs ureb o
papaau aw] ‘seyoeoidde painjonils ul Uey) Uoleu
-IpI00D 810W 8] UED }10M s,8jdoad g Buneibeiu

‘abenbue| Buiwwesboid pain

-oni1s WoJj uaielp A1ea ebenbue| OO Jo xelAs 10800 1| 8p0o2 [euol
‘sejnpow weiboud wouj s1oslqo ysinbunsip o buikn -IpeJ} UBY} MOJ|0} O} Jepiey Si 8p0d 8y} ‘[sebenb
‘sWiees }i se Ases Sk Jou OO O} UolSUBL (pulll o -uB| pejualio] 198lqo Ul s108(q0 Woj JusIeIp

awe)y Buiwwelboid painonas uim bulwelBold (522) L1 0S 81em [sebenbuej] [einpad0oid Ul suonouny AUm (1) Ot 18410

‘welboid QO Ue ul UolNoeXd
jo moy} ays Buiddeyy ‘sebessew pappequie ||B Bul
-puejsiepun Jnoyim abesssw auo Bulpuelsiepun

‘Buissed ebessew Bulpuelsispun
“woJy u8yul 0} 108lqo 1ybu ey}

‘sasse|0 Jo Aleiqy) 8yl mouy noA Bulpul4 ‘@sn 01 SBUO UIYM 10} |88} poob e 186 jueo
ssejun Bulwnsuoo awn pue Jnaiip A1eA 8q ued noA ey spoylew pue sessejo Auew og ‘weuyj bul Buiw
asnay ‘11 Buneoo| pue sisixe ssepo e Jl 1o Bulpul4 (0g) 8  -pulj pue UsnLM ussq ApeeJle eney spoyiew leum (gv) 22 -weiboid

‘|lepow 8|qIBUE} JBYMaWOS B 0jul PlIOM |B8. BU}

s100lqo, se seapl 10eJ1SqE Bululje( ‘UoIE)} ul e|qibuelul Bulylewos Bulliiojsuel | 1081100 Ajeo

-uewe|dwi 0} S)desuod wol Buie|suel ] ‘esn 0} seib -juewss si jey) |spow e Buiiess) \piepuels e 8isul
-ojopoyiaw Jes|d ou—Bulwwesbelp pue Bulubiseq (5°2g) +t s—senbiuyos) Bulwweibelp pue Bullepow ey | (82) 81 Buljepon

‘seinquie ‘UonOBJISOE pUE UoHEZIEIeUSD UBBMIB] SBOUBIS)
aouB)SUl pue ssejo usamiaq Buiysinbunsiq :bul -jIQ ‘spoylew eouBlsul SNSIeA ssejd Bulpuelsiepun swuel
-peOaA0 SnsiaA Buiply UOIBLIIOJUI SNSIBA UOHE|NS “ubrens ||e 11 desy| 0} piey st 1l ‘A1e|nqesoA meu Jo pue sjded
-deou3 ‘suedxe Jualayip Aq swiel Jo esn jueseyld (G2) 0L suol ‘wsiydiowAjod pue BuipeojeA Jo s1deduod (1) O} -uod 0O
sajdwex3 s1d@ouod sejdwex3 sidecuoo  eeseodoy

(%) "ON (%) ON
2 dnoin | dnoiny

s)nsay uoneoynuap] 1daouo) jo Arewwng ¢ Qe

! L$ I
) er. Further reproduction prohibited without permissionyyyy

)



110 SHEETZ ET AL.

Both groups identified concepts within each area that were difficult. From the
concept examples shown in Table 3, it is evident that the groups were thinking
similarly about these issues. Learning OO terms, managing the large class library in
Smalltalk, grasping the distributed nature of OO programming, and making the shift
from procedural to OO thinking were difficulties identified by both groups.

Despite these similarities, there were also areas where the groups differed in the
amount and nature of the concepts generated. Group 1, for example, identified
considerably more programming-specific issues than did group 2 (42 percent versus
20 percent of all concepts, respectively). Group 1 identified more difficulties with
respect to programming than with any other area, while the programming area for
group 2 contained the fewest difficulties. Group 2 identified more high-level difficul-
ties than did group 1, particularly with respect to “buying in” ta the OO paradigm. For
example, group 2 identified issues associated with obtaining management support for
and investment in OO technology and wading through the media hype to determine
how, where, and why OO techniques should be used.

To determine whether the group similarities and differences were due to one or two
members dominating each session, we examined the contribution of individuals within
each group. Table 4 shows the number of concepts generated by each participant.

All participants contributed to the concept identification task, although not all
contributed equally. Each group had two members who contributed over 70 percent
of all concepts—P1 and P3 in group 1, and P6 and P7 in group 2. P6 and P7 identified
all of the “management-related” issues (e.g., buying into the OO paradigm, managing
OO projects, startup costs of switching paradigms) in group 2. P6 and P7 were also
the only two participants in the study who had any management experience (see Table
1). This may account for some of the difference in focus between the groups, since
management issues were not explicitly addressed in the course content.

The difference in emphasis on programming issues also may be explained partially
by the different programming backgrounds between the groups. Group 2 members
knew, on average, four programming languages, while group | members knew only
two programming languages on average. All three participants in group 2 knew C; P6
and P7 in group 2 had also tried C++, an OO programming language. Participants in
group | had prior training in only structured programming languages (COBOL, Basic,
or Pascal). This difference in programming language experience may have contributed
to the different emphasis each group placed on programming issues. For example, the
additional programming languages known in group 2 may have given participants
greater confidence, and hence increased their self-efficacy, in their ability to learn a
new programming language such as Smalltalk. This interpretation would be consistent
with prior research on computer training that shows a positive relationship between
individuals’ self-efficacy and performance working with new computer applications
after completing a training course [13]. If group 2 members were more confident in
their ability to learn Smalltalk, this confidence may have enabled them to focus on
other nonprogramming issues that make learning OO techniques difficult.

To summarize the concept-level results, both groups identified difficulties with
respect to analysis and design techniques, programming, and concept/terminology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyyy



LEARNING OBJECT-ORIENTED TECHNIQUES (1]

Table4.  Number and Percentage of Concepts Identified by Each Participant

Participant in No. (%) of Participant in No. (%) of
group | concepts identified group 2 concepts identified
1 20 (31) 5 10 (25)
2 9 (14) 6 18 (45)
3 26 (40) 7 12 (30)
4 10 (15)

65 (100) 40 (100)

issues. In other words, some aspects of all topics covered in the OO course were
difficult for the participants. This is not surprising given the view that OO thinking
and OO development require a “paradigm shift” from traditional structured system
development [26]. In both groups, 25-30 percent of the concepts relate to similar OO
analysis and design difficulties, suggesting agreement on the difficulties associated
with OO modeling and diagramming techniques. The most noticeable difference
between the groups is the relative emphasis group | placed on programming issues
and the relative emphasis group 2 placed on higher-level issues such as management
commitment and training. Again, this difference may be explained partially by the
different education and work experience of members in each group.

Category Level

Category-level data results from the three activities following concept identification:
category definition, concept classification, and category ranking (see Table 2).

Category Definition and Concept Classification

Category identification resulted in the category names and definitions presented in
Table 5. Each group identified ten categories, which was the maximum number of
categories permitted by the VisionQuest GSS. Group 1’s categories were Smalltalk
Language (ST), Smalltalk Front End (FE), Analysis and Design Techniques (AD),
Object Concepts (OC), Object Interaction (O1), Working with Graphical User Inter-
faces (WG), Event Programming (EP), Choosing Words (CW), Lack of Standards
(LS), and Organizing Information Load (IL}. Group 2’s categories were Reuse (RE),
Paradigm Shift (PS), Modeling Reality (MR), Terms (T), Design Issues (D), Inheri-
tance (IN), Message Passing (MP), Design Tools (DT), Commitment and Investmeni
(CI), and Generalization/Specialization and Aggregation (GS).

Once the categories were identified and defined, participants classified each concept
into one of the categories. To determine the cohesiveness of the categories from the
participants’ perspectives, we calculated the level of group agreement for each concept
classified. Most concepts—69 percent (72/105)—were classified consistently (i.e.,
placed in the same category) by a majority of the participants. In group 1, 60 percent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy,



112 SHEETZ ET AL.

(39/65) of the concepts were classified consistently by three or four group members.
In group 2, 83 percent (33/40) of the concepts were classified consistently by two or
three group members. The overall K, Kappa, for all concept classification is 0.48 for
group 1 and 0.58 for group 2, indicating a moderate level of agreement [35] that is
statistically significant (group 1, Z=22.00, p <0.001; group 2, Z=17.02, p < 0.001).
This agreement suggests that participants had a shared understanding of the categories.

Individual group member contribution to the classification activity is summarized
in Table 6, which shows which categories each participant used most often for the
concepts he or she identified earlier in the GSS session. Here again, we see similarities
and differences between the groups. Programming-related categories (e.g., Smalltalk
Language, Smalltalk Front-End) were heavily used in group 1, which was not the case
for group 2. Analysis and design categories (e.g., Analysis and Design Techniques,
Choosing Words, Design Issues, Modeling Reality) were used in both groups.

The similarity and differences in the concepts generated by the two groups were
discussed earlier. Given the amount of overlap in the concepts identified, it is not
surprising that there is also considerable overlap in the categories identified by each
group. The similarity in categories may not be immediately obvious from the category
names, but it becomes more clear when we consider the category definitions and the
concepts grouped into them. Figure 1 presents a matrix where the rows represent group
1’s categories and the columns represent group 2’s categories. An “X” in a cell
indicates that the two corresponding categories overlap. Overlap was determined using
a content analysis approach that identified common words and meanings in the
definitions of categories and text of the concepts placed in the categories. Two of the
authors independently completed the comparisons, then combined their responses to
produce this matrix.

The overlap in category definitions implies that students in both groups have similar
views of the difficulties of using OO techniques. For example, group 1’s Smalltalk
Front End (FE) category overlaps with group 2°s Reuse (RE) category. Both of these
categories deal with using existing classes such as those in Smalltalk’s class library
(see the definitions in Table 5). The difference between the categories is reflected in
their names—the Smalltalk Front End category groups the class library with other
Smalltalk tools (e.g., the debugger), while the Reuse category groups class library
issues with broader reuse issues (e.g., reuse of other people’s ideas). In both cases,
however, becoming familiar with and properly utilizing the class library were an
important concern. Other common areas of difficulty for the groups were clarifying
and understanding concepts such as generalization/specialization, inheritance, aggre-
gation, and message passing (group 1’s categories Object Concepts and Object
Interaction; group 2’s categories Generalization/Specialization/Aggregation, Inheri-
tance, Terms, and Message Passing).

Design categories and OO analysis were identified and used as well. The difficulties
here fall into two areas—conceptually modeling a domain using OO concepts and
specifically representing that model using OO analysis and design methods and
notations. The groups perceived capturing a semantically rich and valid model of the
world as difficult (see group 1’s Choosing Words and Analysisand Design Techniques

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



LEARNING OBJECT-ORIENTED TECHNIQUES 113

Table 5.  Category Names and Definitions Provided

Category name

(code) Definition
A. Group 1 b
Smalltalk Language Syntax issues particular to Smalltalk such as capitalization and
(ST) punctuation.
Smalltalk Front End  The program development environment including the class library.
(FE) Finding things and moving around. Using the debugger and other
parts.
Analysis and Design Object diagramming and representing the problem space versus
Techniques (AD) the (solution) space. Learning OO design tools as opposed to the
programming language.
Object Concepts The terminology of OO techniques
(OC) (e.g., abstraction, generalization, polymorphism).
Object Interaction The interaction of objects including message passing.
(on
Working with Using graphical user interfaces to implement OO systems.
Graphical User
Interfaces (WG)
Event Programming Understanding and using event-driven programming techniques.
(EP)
Choosing Words Choosing the right words to semantically represent the
(CW) problem, to discuss objects, and to name objects and methods.
Lack of Standards No standards for analysis, diagramming, design, and
(LS) programming.
Organizing Organizing the bulk of information associated with

Information Load (IL) object-orientation, including OO concepts, programming
language, and graphical user interfaces.

categories and group 2’s Modeling Reality category). They also felt that the abundance
and use of specific OO analysis and design diagrams and tools added to the difficulty
of OO techniques (see group 1’s Analysis and Design Techniques and Lack of
Standards categories and group 2’s Design Tools categories).

Figure | also demonstrates where the two groups differed in terms of categories.
Shaded columns and rows represent categories identified by one group that do not
overlap with the other group’s categories. Again, group 1 was more focused on
programming issues, and group 2 was more focused on higher-level issues. For
example, group 1 identified five categories—Smalltalk Language, Smalltalk Front
End, Working with Graphical User Interfaces, Event Programming, and Object
Interaction—that involve programming-specific (Smalltalk specific and Microsoft
Windows specific) concepts. Three of these categories have no counterpart in group
2’s categories. On the other hand, group 2 focused more on high-level, management
or organizational issues than group 1 did. Group 2 identified two categories, Commit-
ment and Investment and Paradigm Shift, that have no counterpart in group 1's
categories. These two categories address issues of management “buy-in” to OO
techniques and changing the way programmers think about developing systems.

The results of the category definition and concept classification activities reinforce

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



114  SHEETZ ET AL.

Table 5. Continued

b. Group 2

Reuse (RE) Adapting existing code and classes. Using otﬂzﬁéoples: ideas.

Paradigm Shift (PS) Moving from thinking in terms of structured programming to OO
concepts.

Modeling Reality The process of mapping concepts in reality into objects in the

(MR) system. Breaking reality up into pieces. Defining the boundaries of
the problem and solution space.

Terms (T) Understanding and reconciling the various sets of terminology.

The labels as separated from the concepts and their meanings.

Design Issues (DI)  Deciding how to structure a program. Classes and how they relate
to each other. Organizing the class hierarchy — what goes
where, inheritance, etc.

Inheritance (IN) How attributes and behavior waterfall through the [class] hierarchy.

Message Passing The mechanism that allows objects to communicate and function

(MP) as a system.

Design Tools (DT)  The methodologies and techniques for OO analysis and design or
lack thereof.

Commitment and Commitment and investment required to trust, learn and

Investment (Cl) implement OO concepts. Time and effort of individuals; money

and commitment at the organization level. Belief that the
investment will pay off.

Generalization, The definitions of and distinguishing between the concepts of
Specialization, and  generalization, aggregation, specialization, and abstraction.
Aggregation (GS)

the findings from the concept identification activity discussed ecarlier. This suggests
that the categories adequately represent the beliefs, facts, and issues contained in the
concepts.

Category Ranking

The preceding discussion focused on the definition and number of categories identified
by each group. To understand the relative importance of issues from the participants’
perspectives, a category ranking activity was performed in the GSS sessions (see Table
2). Category importance ratings indicate the participants’ perceptions of the contribu-
tion of the categories to the difficulties of using OO techniques. The higher the rating, the
more the category contributes to the difficulty of learning OO techniques. Table 7 presents
the mean category importance ratings and the level of agreement, the Kendall coefficient
of concordance [35], attained by the participants for each of three rating steps.

As Table 7 shows, the participants in group | reached a moderate (0.50) level of
agreement by the third rating step. Rankings of the categories were essentially the
same over all three rating steps. Group 2’s category rankings were not as stable over
the three ratings steps as were those of the first group. The Generalization/Specializa-
tion category fell in perceived importance, while the Paradigm Shift category in-
creased in importance. The Inheritance and Terms categories also traded places from
the second rating step to the third rating step. Overall, the group reached a high (0.73)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



LEARNING OBJECT-ORIENTED TECHNIQUES 115

RE PS MR T DI IN MP DT CI GS

ST
FE X X X
AD X X X
ocC X X X
01 X
WG
EP :
CW X
LS X
IL :
Figure 1. Overlap In Group 1 and Group 2 Category Definitions
Group | Category Codes (rows): ST = Smalltalk Language; FE = Smalltalk front End; AD =
Analysis and Design Techniques; OC = Object Concepts; Ol = Object Interaction; WG =
Working with Graphical User Interfaces; EP = Event Programming; CW = Choosing Words;
LS = Lack of Standards; IL = Organization Information Load.

Group 2 Categories (columns): RE = Reuse; PS = Paradigm Shift; MR = Modeling Reality; T
= Terms; DI = Design Issues; IN = Inheritance; MP = Message Passing; DT = Design Tools;
CI = Commitment and Investment; GS = Generalization, Specialization, and Aggregation.
Note: An “X” indicates overlap in the category definitions for the corresponding row and
column. Shaded rows and columns indicate categories identified by only one group.

Table 6.  Category Usage by Participant (Only for Concepts
Identified by the Participant)

No. of
concepts Categories used by a participant to classify 2 or more
Participant  identified of the concepts he or she generated

Group 1
P1 20 Smalltalk Language (6), Analysis and Design Techniques
(5), Object Concepts (5)
P2 9 Smalltalk Front End (3), Object Interaction (2)
P3 26 Smalltalk Language (4), Smalltalk Front End (4), Analysis

and Design Techniques (3), Object Interaction (3), Event
Programming (3), Choosing Words (3)

P4 10 Smalltalk Language (3), Object Concepts (3)
Group 2
P5 10 Design Issues (3), Paradigm Shift (2)
P6 18 Generalization and Specialization (4), Modeling Reality
(3), Design Issues (3), Reuse (2)
Py 12 Paradigm Shift (5), Modeling Reality (3)

Numbers in parentheses are the number of concepts generated by the participant and assigned to
that category by the participant.

level of agreement by the third rating step.

Group | ranked Object Concepts and Analysis and Design Techniques as the most
important categories (mean ratings for the third rating step were 7 and 6, respectively).
For group 2, the most important categories were Commitment/Investment and Modeling

er. Further reproduction prohibited without permissiony,




116 SHEETZ ET AL.

Table 7.  Category Ratings

Means Means Means

Category name rating | rating 2 rating 3
a. Group |

Object Concepts 7.00 6.75 7.00
Analysis and Design Techniques 6.25 6.25 6.00
Object Interaction 6.25 6.00 74
Smalltalk Language 6.00 5.50 5.50
Smalltalk Front End 5.00 4.75 4.75
Working with GUIs 4.25 4.25 4.00
Choosing Words 4.25 4.25 4.50
Event Programming 4.00 3.50 3.75
Organizing Information Load 4.00 3.50 3.25
Lack of Standards 2.25 2.75 3.00
Total
Group agreement 0.67 0.50 0.50

Kendall coef. of concordance (W) significance p<0.05 p<0.05 p<0.05

b. Group 2

Commitment/Investment 6.33 6.33 6.33
Modeling Reality 5.67 6.33 6.33
Design Issues 5.00 5.00 5.33
Design Tools 5.00 4.00 4.33
Paradigm Shift 3.67 3.67 3.67
Generalization/Specialization/Aggregation 4.67 3.00 2.67
Reuse 4.33 3.00 3.00
Inheritance 333 2.00 1.67
Terms 2.33 1.67 2.00
Message Passing 2.33 1.33 1.00
Total

Group agreement 0.52 0.70 0.73
Kendall coef. of concordance (W) significance p Ns. p<0.05 p<0.05

Reality (mean ratings for the third rating step were 6.33 and 6.33). Thus, both groups
perceived of analysis and design issues as relatively important (or difficult). Group
2’s focus on managerial or organizational issues is evident in the high ranking of the

Commitment category. This is consistent with our earlier analysis of this group’s
concept and category identification activities. Group I, however, did not rank pro-
gramming categories as most important, although these participants identified many
programming-related concepts and categories.

A classification activity analysis also was performed to determine the relative
importance of the categories. A classification activity can be defined as a participant
placing a concept into a category. The rightmost column in Table 8 shows the total
number of classification activities for each category.

er. Further reproduction prohibited without permissionyp,



LEARNING OBJECT-ORIENTED TECHNIQUES 117

Table 8.  Number of Concepts per Category for each Participant

a. Group 1
Category name Pl B2 P3 P4  Total
Object Concepts 22 13 8 12 58
Smalltalk Language 15 10 10 15 50
Analysis and Design Techniques 9 10 13 8 40
Obiject Interaction 6 6 5 6 23
Smalitalk Front End 1 8 6 7 22
Working with GUIs 4 4 4 4 16
Choosing Words 3 4 5 3 15
Organizing Information Load 0 3 4 5 12
Lack of Standards 2 5 1 4 12
Event Programming 3 2 5 1 11
Total 65 65 61 65 256

Note: Participant 3 did not classify four of the group’s 65 concepts.

b. Group 2

Category name P5 P6 P7 Average
Design Issues 10 4 h 21
Paradigm Shift 6 8 3 17
Modeling Reality 5 5 5 15
Reuse 5 5 4 14
Commitment and Investment 3 3 5 11
Generalization/Specialization and 2 3 6 11
Aggregation

Terms 4 5 2 11
Design Tools 3 3 2 8
Message Passing 2 1 2 5
Inheritance 0 0 2 2
Total 40 37 38 115

Note: Participants 6 and 7 did not classify three and two of the group’s 40 concepts, respectively.

Group 1 used the Object Concepts, Smalltalk Language, and Analysis and Design
Techniques categories most often in the classification exercise; group 2 used the
Design Issues, Paradigm Shift, Modeling Reality, and Reuse categories most often.
The ranking by total category usage from this analysis is consistent with the category
importance rankings. For group 1, there was a very high level of agreement between
the importance rankings and usage rankings (Kendall Coefficient of Concordance (W)
=0.96, p = 0.0451). Comparison of Table 7a and Table 8a shows the consistency of
these results. The importance and usage rankings for group 2 also showed a very high
level of agreement (Kendall Coefficient of Concordance (W) =0.84, p =0.0860). Thus,
the more concepts placed in a category, the more important that category was
perceived to be.

To summarize, the category-level analysis is consistent with the concept-level

er. Further reproduction prohibited without permissiony,




118 SHEETZ ET AL.

results discussed earlier. Both groups identified difficulties with respect to OO analysis
and design, programming, and concepts or terminology. The strongest similarity
between the groups is the importance of and complexity associated with analysis and
design. The strongest difference between the groups is group 1’s focus on program-
ming issues and group 2’s focus on managerial or organizational issues. However, the
first group’s emphasis on programming may be slightly mitigated by the fact that the
Object Concepts category ranked as more important than any of the group’s five
programming-related categories. Thus, while these participants may perceive a large
number of programming-related obstacles, they may also believe these are more
surmountable than the initial indoctrination into “object think™ and vocabulary.

Cognitive Maps

In the last portion of the GSS sessions, participants defined causal relationships
between the categories (see Table 2). Each relationship represents an individual’s
perception of how the difficulty associated with learning one category or topic
influences the difficulty of learning another category or topic. Participants scored
relationships using a scale from —3 (strongly decreasing) to +3 (strongly increasing).
The number of relationships identified by the individual participants ranged from 38
to 72 with an average of 50 of the 90 possible relationships. Individuals in group 1
identified an average of 44 relationships among their 10 categories while individuals
in group 2 identified an average of 59 relationships among their 10 categories.

Cause maps of individual perceptions of the difficulty of using OO techniques were
derived from these relationships. Several of the participants’ maps showing relation-
ships of strength greater than or equal to two (i.e..—3,-2, 2, or 3) are presented in the
appendix.2

A cause map can be analyzed for several purposes: to identify the relative importance
of concepts in the map [18]; to determine if concepts are perceived as goals, inputs,
or strategies for using inputs to accomplish goals [4, 7, 39]; and to identify shared
perceptions of group members [S]. These analyses are performed by computing each concept’s
cognitive centrality [18], performing a Givens-Means-Ends analysis [39], and averaging the
strengths of common relationships in individual cognitive maps [39], respectively.

Cognitive Centrality Analysis

Cognitively central concepts indicate a focus of an individual’s attention. The number
of causal relationships connected to a concept in a cognitive map is a measure of
cognitive centrality [18]. More important concepts are more cognitively central—that
is, individuals believe concepts that influence (or are influenced by) many other
concepts are more important than concepts that influence (or are influenced by) few
other concepts. Thus, a ranking of the categories by cognitive centrality should be
consistent with the category importance rankings and the rankings of category usage.
The categories were ranked in order of average cognitive centrality. The results of this
ranking are shown in Table 9.

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyyyy



LEARNING OBJECT-ORIENTED TECHNIQUES 119

Table 9.  Category Rankings by Average Cognitive Centrality

a. Group 1
Category name Pl P2 P3 P4  Average
Smalltalk Language 12 10 3 ", 9.00
Object Interaction 6 10 4 4 6.00
Lack of Standards 3 1 1 8 5.75
Analysis and Design Techniques 10 3 3 6 5.50
Smalltalk Front End 7 7 0 6 5.00
Object Concepts 6 4 3 7 5.00
Event Programming 2 6 4 7 4.75
Working with GUIs 2 7 3 5 4.25
Organizing Information Load 1 3 0 10 3.50
Choosing Words 7 0 5 2 3.50
s b. Group 2 e hiare
Category name P5 ABD | Average
Commitment and Investment 7 11 8 8.67
Design Issues 2 16 < 7.33
Paradigm Shift 3 16 3 7.33
Modeling Reality 1 13 5 6.33
Inheritance 2 9 5 5.38
Generalization/Specialization and 2 12 2 5.33
Aggregation
Design Tools 1 11 0 4.00
Message Passing 2 7 2 3.67
Reuse 2 7 0 3.00
1 74 1

Terms 3.00

Both groups showed a high level of agreement between the group category impor-
tance rankings, group category usage rankings, and average cognitive centrality
rankings (group 1 Kendall Coefficient of Concordance (W) =0.78, p = 0.0121; group
2 Kendall Coefficient of Concordance (W) = 0.65, p = 0.0411). Thus, the categories
perceived as more important were generally the more cognitively central categories.
The levels of agreement attained on the rankings of the categories obtained from three
different data collection methods support the validity of the relative importance of the
categories from the students’ perspectives.

As Table 9 shows, analysis and design categories had high cognitive centrality
scores for both groups (e.g., the Analysis and Design and Lack of Standards categories
for group 1 and the Design Issues and Modeling Reality categories for group 2). Group
1’s most cognitively central category was the Smalltalk Language, again reflecting
the emphasis on programming difficulties for these participants. Group 2’s most
cognitively central category was Commitment and Investment, again confirming these
participants’ emphasis on higher-level issues.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



120 SHEETZ ET AL.

Givens-Means-Ends Analysis

Givens-means-ends analysis provides a systematic approach for understanding cog-
nitive maps. Givens represent inputs, constraints, or expectancies with which individ-
uals in the environment must contend. A givens category has more outflows than
inflows of causal influence in a cognitive map; it primarily influences other categories.
Ends represent goals or outcomes that an individual attempts to achieve. An end
category has more inflows than outflows of causal influence; it is primarily influenced
by other categories. Means represent strategies, practices, or approaches that are
attempts to manage constraints to achieve outcomes. A means category has approxi-
mately the same number of inflows and outflows of causal influence. The ratio of
inflows to outflows determines whether a category is a given, means, or end. Ratios
less than one are givens; ratios greater than one are ends; and ratios roughly equal to
one are means. Each individual map was evaluated using givens-means-ends analysis
{7, 18, 39]. The individual cognitive maps are shown in the appendix. Table 10 shows
the categories classified as givens, means, and ends from the participants’ perspec-
tives. Italicized rows indicate categories that were perceived as either givens, means,
or ends by a majority of group members.

In group 1, a majority (75 percent) of the participants identified the Object Concepts
and Lack of Standards categories as ends, the Working with Graphical User Interfaces
and Analysis and Design categories as givens, and the Choosing Words category as
means. Fifty percent of the participants in group | identified Event Programming (P1
and P2), Object Interaction (P1 and P3), and Organizing the Information Load (P1 and
P4) categories as givens and programming issues, including issues in the Smalltalk
Language (P1 and P2), Smalltalk Front End (P1 and P2), and Event Programming (P3
and P4) categories, as means.

The givens, means, and ends identified by the individuals in group | indicate that
they perceive that learning OO techniques starts with OO analysis; design, and
implementation ideas (the Analysis and Design, Working with GUIs, and Object
Interaction categories). Learning these ideas occurs through the identification of
objects that are semantically consistent with a problem domain (Choosing Words
category) and implementing those objects using OO programming (Smalltalk Lan-
guage, Smalltalk Front-End, and Event Programming categories). The expected
outcome of the learning process is an understanding of OO concepts (Object Concepts
category). The Lack of Standards category also was perceived as an end. This category
was strongly related to the Analysis and Design Techniques category. We speculate
that the students were looking for standards as a way to understand OO analysis and
design.

A majority (66 percent) of the participants in group 2 (see Table 10b) identified the
Generalization-Specialization-Aggregation category as an end and the Commitment
and Investment and Design Tools categories as givens. All participants in group 2
viewed the Design Issues category as a given and the Inheritance category as a means.
The givens, means, and ends identified by the individuals in group 2 indicate that they
perceive that learning OO techniques starts with a commitment (Commitment and

Reproduced with permission of the copyrightowner. Further reproduction prohibited without permissionyypn



LEARNING OBJECT-ORIENTED TECHNIQUES 121

Table 10. Category Givens, Means, and Ends for Participants
(Cells contain category codes)

a. Group 1
Pl P2 P3 P4
Givens WG WG waG
(ratio of inflows to AD AD AD
outflows < 1) EP EP IL
ol ol
IL LS ST
Means cw cw cw
(ratio of inflows to outflows ST ST
between 1 and 1.5) EE FE
EP EP
WG
ocC
AD (o]
Ends ocC ocC ocC
(ratio of inflows to LS LS LS
outflows > 1.5) ST
FE
IL ol
b. Group 2
P5 P6 P7
Givens DI DI DI
(ratio of inflows to DT DT
outflows < 1) Cl cl
T MP PS
MR RE
GS
Means IN IN IN
(ratio of inflows to outflows RE PS
between 1 and 1.5) MR
MP T
Ends GS GS
(ratio of inflows to PS MR
outflows > 1.5) Cl MP
T

Investment category) to OO analysis and design tools and techniques (Design Issues
and Design Tools categories) and ends with the understanding of the OO concepts
such as generalization and aggregation (Generalization category). This is consistent
with the goal of learning object concepts identified by participants in group 1.

Composite Cognitive Maps

Figure 2 shows composite cognitive maps for each group. These maps provide an
indication of group perceptions of category interrelationships. An arrow indicates that
the participants in the group shared a perception that an increase in difficulty due to

er. Further reproduction prohibited without permissiony,




122 SHEETZ ET AL.

A & D Techniques <

-

Object Interaction » Object Concepts

Smalltalk /

Working w/GUIs i e Language

\ Lack of
Standards ™=

Event Programming

Smalltalk
Front End

Figure 2a. Group | Composite Cognitive Map

Modeling Reality

Generalization

Design Issues ——————— 3 Aggregation
. Specialization
Commitment ¢

Investment
Inheritance

Paradigm Shift
Figure 2b. Group 2 Composite Cognitive Map

the originating category affects the difficulty due to the terminating category. Thick
arrows represent strong relationships (i.e., the average of the participants’ ratings of
the relationship was 1.5 or higher). Thin arrows indicate moderately strong relation-
ships (i.e., average ratings between | and 1.5). The maps do not show weak relation-
ships (i.e., average ratings less than 1). The maps in figure 2 are organized with givens
on the left, means in the middle, and ends on the right. This organization shows causal
influence flowing from left to right in the diagram.

For group 1 (figure 2a), working with graphical user interfaces and event program-
ming strongly affect the perceived difficulty of using Smalltalk, which in turn affects
the difficulty of understanding OO concepts. This perception may be due to the fact
that Smalltalk was not only the students’ first OO programming experience, it was

- L
l"".l..!' )u AJ er. Further reproduction prohibited without permissionyyy




LEARNING OBJECT-ORIENTED TECHNIQUES 123

also (in most cases) their first experience developing an application with a graphical
user interface in a Microsoft Windows environment. Thus, the difficulty of OO
programming in Smalltalk was increased because the students also had to learn about
GUI design, windows and panes, mouse events, and so on. User interface development
is one of the most seductive and complex parts of the Smalltalk environment [30]. One
way to address this difficulty is to assign student projects that require a simple user
interface in order to reduce the scope and (hence) the difficulty of the event program-
ming and GUI programming aspects of Smalltalk. This, in turn, should make Smalltalk
more manageable, which, given the group 1 cognitive map, should also decrease the
difficulty of understanding OO concepts. Thus, instruction that provides materials
such as tutonals, templates, and examples for window design and event handling
should facilitate learning OO concepts.

Group | participants also perceived analysis and design and object interaction as a
positive influence on their understanding of object concepts. The analysis and design
and object interaction categories address using OO diagramming techniques and
CASE tools to represent various aspects of an OO model. The CASE tool used in the
course (ObjectMaker) may have added another dimension of complexity for the
students that detracted from, rather than enhanced, their understanding of OO con-
cepts. Thus, for these students, instruction that reduces the difficulties of analysis and
design techniques would reduce the difficulties in understanding object concepts.
Inadvertently increasing analysis and design difficulty (e.g., through the use of a CASE
tool that has its own associated learning curve) makes it more difficult to learn object
concepts.

The means of implementing analysis and design ideas identified by the givens-
means-ends analysis, that is, choosing semantically correct words, was not involved
in any relationships with an average strength greater than one in the composite group
map. Thus, the Choosing Words category does not appear to influence the difficulty
of understanding object concepts. Based on group 1°s perceptions, instructors should
select a simple OO methodology, albeit one that includes the essential object concepts,
to reduce the difficulties of understanding object concepts.

Group 1’s cognitive map shows a bidirectional relationship between the analysis
and design category and the lack of (analysis and design) standards category. These
students perceived that analysis and design difficulties made it more difficult to find
appropriate standards. Conversely, they perceived that the lack of standards made
analysis and design more difficult. One way to address this problem is to use
instruction that emphasizes the agreed-upon standard characteristics of OO analysis
and design techniques (e.g., problem orientation, abstraction, inheritance, and mes-
sage passing). Introduction of more advanced OO methods then could build on these
fundamentals, ideally in a subsequent course. These steps should facilitate learning
the object concepts.

Group 2’s composite cognitive map, shown in figure 2b, illustrates their somewhat
“higher level” of thinking about OO techniques. The strongest relationship in the map
is the influence of the Commitment and Investment category on the ability to make
the paradigm shift that is required by OO techniques. In addition, group 2 perceived

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



124 SHEETZ ET AL.

that commitment and investment affect the difficulty of learning OO design. The
design issues category is a given in the composite cognitive map for group 2. This is
consistent with the givens-means-ends analysis where all three participants identified
design issues as a given. Design issues influence the difficulty of learning inheritance,
generalization, and aggregation.

Rather than focusing on programming and graphical user interfaces, group 2’s
cognitive map indicates that commitment to OO technology strongly affects the
perceived difficulty of moving from thinking about problems in a structured manner
to an OO manner. This would indicate that, for group 2, “buying in” to object
orientation is an important first step to shifting from structured to OO programming.
As with group 1, the cognitive map for this group is consistent with their category
importance rankings. The primary given (Commitment and Investment) and end
(Modeling Reality) categories in the composite cognitive map were also the two most
important categories in the category ranking activity described earlier.

The goals (ends) of group 2 have similarities and differences with the goals (ends)
of group 1. Both groups were attempting to learn generalization, aggregation, and
inheritance concepts that are essential for understanding OO techniques. Furthermore,
both groups indicate that simplifying design issues will make learning OO concepts
less difficult. The major differences between the groups can be summed up by
recognizing the “lower-level” or programming emphasis of group 1 and the “higher-
level” emphasis of group 2.

Summary of Cognitive Map Findings

Results from the cognitive maps indicate that category rankings by cognitive centrality
are consistent with importance rankings developed through the earlier Delphi-like
process [14], and rankings of category usage during concept classification. Consis-
tency of the relative importance of the categories implies that the perceptions of the
participants were congruent.

Givens-means-ends analysis shows that participants in both groups had similar goals
(object concepts for group 1, generalization and aggregation for group 2) and expec-
tations (analysis and design for group 1, design issues and design techniques for group
2). Programming issues contributed to learning for group 1 more than they did for
group 2. Group 2 was concemned about making the commitment and changing their
way of thinking from structured techniques to an OO approach. Composite cognitive
maps show that simplified concepts should make leaming less difficult for both
programming and analysis issues. Providing rationales for buy-in to an OO approach
also should reduce the difficulty of the learning process.

Discussion

A MAJOR THEME THAT ARISES FROM THIS STUDY is that there are many issues that
make learning OO techniques difficult. One of the biggest training issues raised in
prior research is the paradigm shift from structured to OO thinking [26]. While none

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



LEARNING OBJECT-ORIENTED TECHNIQUES 125

of our participants was a long-time procedural programmer, they had learned struc-
tured analysis, design, and programming techniques in prior courses and/or work
experience, and they struggled with the change to an OO mindset. These struggles are
evidenced in a number of the concepts identified by each group (e.g., “functions in
procedural [languages] were so different from objects™; “the code is harder to follow
than traditional code like COBOL”). Group 2 identified a separate category (the
Paradigm Shift category) for these issues, and this was one of the group’s most
cognitively central categories,

The students also had difficulty with reuse or class library usage. Reuse in Smalltalk
can be difficult because the class library is large and overwhelming to the OO
newcomer, who may feel as though everything in the library has to be learned before
anything can be done [30]. In our study, several students identified difficulties
grasping the contents of the class library and deciding when and where to reuse (see
Table 3). Each group created a category that largely focused on reuse and class library
issues (the Smalltalk Front End category for group 1 and the Reuse category for group
2). Although these categories were not perceived as the most important (i.e., most
difficult) to the students, they were perceived as having a direct impact on the most
cognitively central category in each group. In group 1, three of the four members’
cognitive maps show that reuse directly influenced the difficulty associated with the
Smalitalk Language category (and vice versa). In group 2. two of three members’
cognitive maps show that reuse directly influenced the difficulty associated with the
Commitment/Investment category. Thus, for both groups. the potential benefits of
reuse were somewhat mitigated by the learning curve associated with the class library,
and reuse difficulties made it more difficult to learn OO programming (for group 1)
and more difficult to “buy in” to the OO paradigm (for group 2).

Message passing, a core OO concept, was also challenging for the students. Both
groups identified difficulties understanding the flow of execution or sequence of
message passing in an OO program (see Table 3), and both created separate categories
for these issues (the Object Interaction category for group | and the Message Passing
category for group 2). Message passing can be difficult to understand because it
changes the traditional concept of “a program.” Instead of a program printout with a
clear beginning and end, an OO program exists in small chunks (methods and
messages) distributed among many objects in a class hierarchy [30]. Rosson and
Carroll describe this difficulty:

[P]rogrammers expect computer programs to have a beginning and an end; one under-
stands a program by reading through it. These notions do not map well in Smalltalk. . . .
understanding a program means understanding what the objects are and how messages
are passed among the objects to accomplish tasks. . . . functionality in a system is in-
credibly distributed. [30, p. 76]

Finally, OO analysis and design issues were very important sources of difficulty for
the students. Both groups had multiple categories for analysis and design issues, and
many of these categories were ranked as highly important and cognitively central.
Many of the students’ analysis and design issues referred to complexities in diagram-
ming notations and difficulties with the CASE tool used. The lack of a standard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypy,



126 SHEETZ ET AL.

accepted set of analysis and design diagrams and the introduction of the ObjectMaker
CASE tool likely increased the students’ struggles in this area.

On the basis of our results, we recommend thethe OO analysis, design, and
programming environment be considerably simplified for pedagogical purposes. The
0O approach represents a significant change from traditional approaches to systems
development. The students in our study had not only to learn new vocabulary and
concepts, but also to incorporate these concepts into new analysis and design models
and a new programming environment. The composite cognitive maps for both groups
show that analysis, design, and programming difficulties increased the difficulty of
grasping OO concepts. Thus, it appears that learning “OO think” may be complicated,
rather than reinforced, by the use of multiple OO analysis and design diagrams, OO
CASE tools, and/or projects with a heavy emphasis on GUI programming. Simplifying
the instructional tools and technology (where possible) should facilitate an emphasis
on core OO concepts and their manifestation in analysis, design, and programming.

There are several ways to simplify the instructional tools and technology. For
example, Rosson and Carroll [31] advocate a minimalist approach to teaching OO
programming in Smalltalk. They reduce some of the complexity of the Smalltalk
environment by creating a browser that restricts the view of the class hierarchy to only
those classes relevant to a particular programming task. Our results suggest that a
minimalist approach may be useful not only for programming, but also for reducing
the difficulties associated with learning OO analysis and design techniques. A com-
plete set of OO analysis and design diagrams could be “pruned” to a smaller core set,
and/or each diagram could use a restricted subset of the complete notation. This would
reduce some of the complexity in the analysis, design, and programming environments
that detracts from learning the key OO concepts.

The cognitive maps for each group suggest other ideas for improving OO teaching.
Each group’s composite map provides an indication of how an educator might
untangle the students’ confusion about OO techniques. For example, from group 1’s
perspective, event programming and working with graphical user interfaces contrib-
uted to the difficulty of learning Smalltalk. Thus, separating event programming and
graphical user interface design (at least conceptually) from Smalltalk, and addressing
the former first (or reducing its importance in class projects) might provide a better
foundation for leaming OO programming concepts. Group 2’s cognitive map suggests
that a high-level discussion of the benefits of OO development over more traditional
approaches would be a good starting point. If these students can themselves “buy into™
the OO approach, they may be in a better position to learn OO analysis, design, and
programming techniques.

Finally, as OO techniques continue to mature and gain in acceptance, other avenues
for addressing the students’ difficulties become available. While there are still dozens
of published OO analysis and design techniques, many of the technique authors are
now working together toward a de facto standard [3, 24, 33]. Many traditional systems
analysis and design textbooks are also moving toward incorporating OO modeling
concepts and techniques, so that students may be introduced to “OQ think” and OO
analysis and design models earlier in their degree programs (e.g., [ 16]). Introductory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyay



LEARNING OBJECT-ORIENTED TECHNIQUES 127

programming courses that incorporate OO concepts and use OO programming lan-
guages are available at many universities. To the extent that OO modeling and
programming concepts are introduced in other courses, the enormity of new material
the students encounter in a single “dedicated” OO course will diminish.

Limitations and Future Research Directions

THIS STUDY HAS SEVERAL LIMITATIONS THAT DESERVE MENTION. First and foremost,
we had a small convenience sample, which limits the ability to generalize our findings.
All of our participants had learned OO techniques by taking the same course, with one
instructor, and one set of OO tools (e.g., Smalltalk, ObjectMaker). These students’
perceptions are certainly influenced by the content and delivery of the course. These
students were also, by and large, novice programmers. Thus, our findings cannot be
generalized to experienced structured programmers or to individuals who have learned
0O techniques through other means. However, many of our findings are consistent
with other research and experiential reports on OO learning (e.g., [26, 28, 31]). Future
studies that incorporate larger and more varied samples are certainly warranted. Many
important factors, such as individual and group differences, instructor characteristics,
and course structure and content, have not yet been systematically explored.

Second, the study was conducted after the students had completed the course. We
got their impressions of learning not as it was occurring, but after the fact. This required
the students to reflect on their OO learning experience and report their perceptions.
Such recall is often imperfect and biased when feelings are elicited; however, when
identifying issues or facts about experience, participants are capable of accurate
responses {19]. This was deemed acceptable in view of our focus on the issues the
students perceived as difficult versus their feelings about the class or OO in general.

Third, the very broad nature of the research question limits the detailed information
available from the study pertaining to any one category of issues. We wanted to get
the students’ perceptions of OO difficulties to identify stumbling blocks from their
perspective. We gathered perception data rather than a more objective assessment of
what OO knowledge they took away from the course to avoid artificially restricting
the range of their responses. We felt this was acceptable because of the exploratory
nature of our research and the consistency of this approach with other cognitive
mapping studies. Certainly, other studies that investigate OO learning difficulties in
a longitudinal manner and from multiple perspectives (e.g., students’ perceptions,
“objective” testing/evaluation, instructor/coworker perceptions) are warranted and
will enrich our early understanding of OO learning.

The results of this study contribute to our understanding of the difficulties in learning
OO techniques and can sensitize educators in classroom and corporate training
environments to some of the obstacles learners encounter. In particular, we found that
the shift from procedural to OO thinking can be easily confounded in two ways. First,
the use of less mature and often more complex analysis and design techniques and
CASE tools can detract from students’ understanding of OO concepts, rather than
reinforcing those concepts. Second, the fact that many OO programs are GUI-driven

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyypan



128 SHEETZ ET AL.

means that students must learn event programming and user interface design, in
addition to OO programming. Teaching approaches that reduce the “noise” associated
with analysis, design, and programming should reduce the difficulties students en-
counter when learning OO systems development. Future research needs to explore the
effectiveness of these and other teaching approaches on OO learning.

Finally, we believe that the use of cognitive mapping with GSS is a promising
technique for exploring OO learning. One avenue for future work would be to conduct
several GSS sessions during the course of OO learning, or during an organization’s
adoption and assimilation of OO technology, to observe the evolution of individual
and group cognitive maps over time, as experience and knowledge are gained. Another
direction is to compare and contrast the cognitive maps of expert and novice OO
developers. These approaches can further improve our understanding of OO learning
difficulties and the impact of teaching/training methods and experience on the learning
process.

NOTES

1. A complete listing of the concepts can be obtained from the first author upon request.
2. Cognitive maps of each participant in the study can be obtained from the first author
upon request.

REFERENCES

1. Anson, R.G.; Fellers, J.W_; Bostrom, R.P.; and Chidambaram, L. Using group support
systems to facilitate the research process. Proceedings of the Twenty-Fifih Hawaii International
Conference on System Sciences, vol. 4, 1992, pp. 70-79.

2. Axelrod, R. Structure of Decision—The Cognitive Maps of Political Elites. Princeton,
NJ: Princeton University Press, 1976.

3. Booch, G. Object-Oriented Design with Applications. Redwood City, CA: Benja-
min/Cummings, 1991.

4. Bougon, M.G. Uncovering cognitive maps—the self-Q technique. In G. Morgan (ed.),
Beyond Method: Strategies for Social Research. Beverly Hills, CA: Sage, 1983, pp. 173-188.

5. Bougon, M.G. Congregate cognitive maps: a unified dynamic theory of organization and
strategy. Journal of Management Studies, 29, 3 (May 1992), 36%--389.

6. Bougon, M.G.; Baird, N.; Komocar, J.M.; and Ross, W. Identifying strategic loops: the
self Q interviews. In A.S. Huff (ed.), Mapping Strategic Thought. Chichester, UK: John Wiley,
1990, pp. 327-354.

7. Bougon, M.G.; Weick, K.; and Binkhorst, D. Cognition in organizations: an analysis of
the Utrecht Jazz Orchestra. Administrative Science Quarterly, 22 (December 1977), 606—639.

8. Coad, P., and Yourdon, E. Object-Oriented Analysis, 2d ed. Englewood Cliffs, NJ:
Yourdon Press, 1991.

9. Coad, P, and Yourdon, E. Object-Oriented Design. Englewood Cliffs, NJ: Yourdon
Press, 1991.

10. Communications of the ACM. Special issue: analysis and modeling in software develop-
ment. Communications of the ACM, 35,9 (1992).

11. Communications of the ACM. Special issue: concurrent object-oriented programming.
Communications of the ACM, 36,9 (1993).

12. Communications of the ACM. Special issue: object-oriented software testing. Communi-
cations of the ACM, 37,9 (1994).

13. Compeau, D.R., and Higgins, C.A. Application of social cognitive theory to training for
computer skills. Information Systems Research, 6,2 (1995), 118-143.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyp



LEARNING OBJECT-ORIENTED TECHNIQUES 129

14. Dalkey, N_, and Rourke, D. Experimental Assessment of Delphi Procedures with group
Value Judgment R—612-ARP. Santa Monica, CA: RAND Corporation, 1971.

15. Davis, G.B.; Nunamaker, J.F.; Watson, H.J.; and Wynne, B.E. The use of a collaborative
work system for the study of the key issues facing information systems managers: a comparison
of issues and data collection methods from previous studies. Proceedings of the Twenty-Fifth
Hawaii International Conference on System Sciences, vol. 4, 1992, pp. 46-59.

16. Decker, R., and Hirshfield, S. The Object Concept: An Introduction to Computer
Programming. Boston: PWS, 1995,

17. Eden, C. On the nature of cognitive maps. Journal of Management Studies, 29, 3 (May
1992), 261-265.

18. Eden, C.; Ackermann, F.; and Cropper, S. The analysis of cause maps. Journal of
Management Studies, 29, 3 (May 1992), 309-324.

19. Ericsson, K.A., and Simon, H.A. Verbal reports as data. Psychological Review, 87 (May
1980), 215-251.

20. Finch, L.; Landry, J.; Monarchi, D.E.; and Tegarden, D.P. A knowledge acquisition
methodology using cognitive mapping and information display boards. Proceedings of the
Twentieth Hawaii International Conference on System Sciences, vol. 3, 1987, pp. 470-477.

21. Fiol, M., and Huff, A.S. Maps for managers: where are we” where do we go from here?
Journal of Management Studies, 29, 3 (May 1992), 267-285.

22. Hoffer, J.A.; Anson, R.; Bostrum, R.P.; and Michaele, S.J. Identifying the root causes of
data systems planning problems: an application of the PLEXSY'S electronic meeting support
system. Proceedings of the Twenty-Third Hawaii International Conference on System Sciences,
vol. 3, 1990, pp. 30-39.

23. Huff, A.S. Mapping Strategic Thought. Chichester, UK: John Wiley, 1990.

24. Jacobson, 1.; Christerson, M.; Jonsson, P.; and Overgaard, G. Object-Oriented Software
Engineering: A Use Case Driven Approach. Wokingham, UK: Addison-Wesley, 1992.

25. Kalkota, R.; Rathman, S.; and Whinston, A.B. The role of complexity in object-oriented
systems development. Proceedings of the Twenty-Sixth Hawaii International Conference on
System Sciences, vol. 2, 1993, pp. 759-768.

26. Manns, M.L., and Nelson, H.J. An exploration of schema development in procedure-ori-
ented programmers learning object-oriented technology. Proceedings of the Fourteenth Inter-
national Conference on Information Systems, 1993, pp. 385-386.

27. Montazemi, A.R., and Conrath, D.W. The use of cognitive mapping for information
requirements analysis. MIS Quarterly, 10, 1 (1986), 44--55.

28. Puhr, G.P.; Nelson, H.J.; and Monarchi, D.E. Teaching object-oricnted systems devel-
opment: challenges and recommendations. Journal of Object-Oriented Systems. 2 (1995),
135-154.

29. Rosson, M.B., and Alpert, S.R. The cognitive consequences of object-oriented design.
Human-Computer Interaction, 5 (1990), 345-379.

30. Rosson, M.B., and Carroll, J.M. Climbing the smalltalk mountain. SIGCH! Bulletin, 21,
3 (1990), 76-79.

31. Rosson, M.B.; Carroll, J.M.; and Bellamy, R.K.E. A case study in minimalist instruction.
Human Factors in Computing Systems, CHI 90 Conference, 1990, pp. 423-429.

32. Rosson, M.B., and Gold, E. Problem-solution mapping in object-oriented design.
OOPSLA-89 Conference Proceedings, SIGPLAN Notices, 24, 10 (1989), 7-10.

33. Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F_; and Lorensen, W. Object-Oriented
Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall, 1991.

34. Scholtz, J.; Chidamber, S.; Glass, R.; Goerner, A_; Rosson, M.B.; Stark, M_; and Vessey,
I. Object-oriented programming: the promise and the reality. Journal of Systems Sofiware, 23
(1993), 199-204.

35. Siegel, S., and Castellan, N.J., Jr. Nonparametric Statistics for the Behavioral Sciences.
New York: McGraw-Hill, 1988.

36. Sheetz, S.D.; Tegarden, D.P.; Kozar, K.A.; and Zigurs, [. A group support systems
approach to cognitive mapping. Journal of Management Information Systems, 11, 1 (Summer
1994), 31-57.

37. Verity, JW,, and Schwartz, E.I. Software made simple: will object-oriented program-
ming transform the computer industry? Business Week (September 30, 1991), 92—100.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyp,



130 SHEETZ ET AL.

38. Vessey, I, and Conger S. Requirement specification: learning object, process, and data
methodologies. Communications of the ACM, 37,5 (1994), 102—113.

39. Weick, K.L.. and Bougon, M.G. Organizations as cognitive maps: charting ways to
success and failure. In H. Sims and D. Gioia (eds.), The Thinking Organization: Dynamics of
Organizational Cognition. San Francisco: Jossey-Bass, 1986.

40. Zhang, W_; Chen, S.; Wang, W ; and King, R.S. A cognitive-map-based approach to the
coordination of distributed cooperative agents. [EEE Transactions on Systems, Man, and
Cybernetics, 22, 1 (1992), 103—114.

APPENDIX : Examples of Individual Participant Cognitive Maps

> Y

A & D Techniques \
TRy

Object Interaction f L » Object Concepts

Lack of Standards \ %
-€

Smalltalk Lang.

¥
Working w/GUIs i / Sraalitalk
/ Front End
Event Programming Y /
i Organizing
Choosing Words Information Load

Key to the Arrows

Strength 2
R S R
Strength 3

A. Group 1, Participant 1

er. Further reproduction prohibited without permissiony,



LEARNING OBJECT-ORIENTED TECHNIQUES 131

Design Issues

Message Terms

Passing

Design Tools Reuse

™~ Inheritance

Generalization A

Aggregation
Specialization

Paradigm Shift - = Commitment/Investment

\ y /
Key to the Arrows Modeling Reality gAoy

Strength 2
o e ER———
Strength 3

b. Group 2, Participant 7

er. Further reproduction prohibited without permissionyyp




